We describe a multi-contrast, multi-dimensional atlas of the Wistar rat acquired at microscopic spatial resolution using magnetic resonance histology (MRH). Diffusion weighted images, and associated scalar images were acquired of a single specimen with a fully sampled Fourier reconstruction, 61 angles and b=3000 s/mm(2) yielding 50 um isotropic spatial resolution. The higher angular sampling allows use of the GQI algorithm improving the angular invariance of the scalar images and yielding an orientation distribution function to assist in delineating subtle boundaries where there are crossing fibers and track density images providing insight into local fiber architecture.  A multigradient echo image of the same specimen was acquired at 25 um isotropic spatial resolution. A quantitative susceptibility map enhances fiber architecture relative to the magnitude images.  An accompanying multi-specimen atlas (n=6) was acquired with compressed sensing with the same diffusion protocol as used for the single specimen atlas. An average was created using diffeomorphic mapping. Scalar volumes from the diffusion data, a T2* weighted volume, a quantitative susceptibility map, and a track density volume, all registered to the same space provide multiple contrasts to assist in anatomic delineation. The new template  provides significantly increased contrast in the scalar DTI images when compared to previous atlases. A compact interactive viewer based on 3D Slicer is provided to facilitate comparison among the contrasts in the multiple volumes. The single volume and average atlas with multiple 3D volumes provide an improved template for anatomic interrogation of the Wistar rat brain. The improved contrast to noise in the scalar DTI images and the addition of other volumes (eg. QA,QSM,TDI ) will facilitate automated label registration for MR histology and preclinical imaging.
A multicontrast MR atlas of the Wistar rat brain.
阅读:3
作者:Johnson G Allan, Laoprasert Rick, Anderson Robert J, Cofer Gary, Cook James, Pratson Forrest, White Leonard E
| 期刊: | Neuroimage | 影响因子: | 4.500 |
| 时间: | 2021 | 起止号: | 2021 Nov 15; 242:118470 |
| doi: | 10.1016/j.neuroimage.2021.118470 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
