INTRODUCTION: The biocompatibility and potential application of graphene-based nanomaterials in biomedicine have been documented. The effects of polyethylene glycol-graphene quantum dots (GQDs-PEG) on cardiac function in rats with myocardial infarction (MI) were examined. METHODS: Wistar rats were randomly assigned to two main groups, each consisting of sham-Veh., MI-Veh., and MI+GQDs-PEG at doses of 5, 10, and 20âmg/kg. MI was induced by the closure of the left anterior descending (LAD) coronary artery. After MI, GQDs-PEG were injected at different doses IP every other day for two weeks. In the end, hemodynamic and heart contractility indices were assessed. The levels of myocardial MDA (malondialdehyde), SOD (superoxide dismutase), GPX (glutathione peroxidase), and TAC (total antioxidant capacity) were measured by the ELISA method. The serum ALP, ALT, AST, creatinine, and urea levels were measured using the photometric method. The infarct size was assessed by TTC staining. RESULTS: GQDs-PEG decreased the infarct size at doses of 10 and 20âmg/kg and recovered the MI-induced reductions of +dp/dt max and -dp/dt max in the study groups. GQDs-PEG normalized systolic blood pressure and left ventricular systolic pressure reduction at the dose of 20âmg/kg in the MI group. Heart SOD, GPX, and TAC increased in the GQDs-PEG 10 and 20 groups. Almost no signs of toxic effects due to GQDs-PEG administration were observed on the liver and kidneys. CONCLUSIONS: The results provided clear evidence that GQDs-PEG improve cardiac performance and hemodynamic parameters in rats with MI by reducing oxidative stress. GQDs-PEG is proposed as a therapeutic target for the treatment of MI.
PEGylated Graphene Quantum Dot Improved Cardiac Function in Rats with Myocardial Infarction: Morphological, Oxidative Stress, and Toxicological Evidences.
阅读:14
作者:Rostamzadeh Farzaneh, Shadkam-Farrokhi Mitra, Jafarinejad-Farsangi Saeideh, Najafipour Hamid, Ansari-Asl Zeinab, Yeganeh-Hajahmadi Mahboobeh
| 期刊: | Oxidative Medicine and Cellular Longevity | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 Nov 20; 2021:8569225 |
| doi: | 10.1155/2021/8569225 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
