To enable the further exploration of structure-activity relationships (SARs) of proanthocyanidins (PACs) with dentin biomodification abilities, Cinnamomum verum was selected for scaled-up purification of mixed A-/B-type, medium-size PAC oligomers. Sequential purification by centrifugal partition chromatography (CPC), Sephadex LH-20, and semiprep HPLC chromatography yielded four underivatized tetrameric (5-8) and two pentameric (9-10) PACs. Their unambiguous structural characterization involved extensive spectral and chemical degradation approaches to show that epicatechin units are connected by plant-specific combinations of doubly linked A- and singly linked B-type interflavanyl bonds. The biomechanical properties (via dynamic mechanical analysis) and physicochemical structure (via infrared spectroscopy) were assessed to evaluate the biomodification potency of PAC-treated collagen in a preclinical dentin model. This study revealed that (4â8) versus (4â6) bonds in PAC interflavan linkages have limited influence on biomechanical outcomes of dentin. By exhibiting a 25-fold increase in the complex modulus of treated dentin compared to control, aesculitannin E (5) was found to be the most potent PAC known to date for enhancing the mechanical properties of dentin in this preclinical model.
Proanthocyanidin Tetramers and Pentamers from Cinnamomum verum Bark and Their Dentin Biomodification Bioactivities.
阅读:3
作者:Jing Shu-Xi, Alania Yvette, Reis Mariana, McAlpine James B, Chen Shao-Nong, Bedran-Russo Ana K, Pauli Guido F
| 期刊: | Journal of Natural Products | 影响因子: | 3.600 |
| 时间: | 2022 | 起止号: | 2022 Feb 25; 85(2):391-404 |
| doi: | 10.1021/acs.jnatprod.1c00972 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
