Cenderitide: structural requirements for the creation of a novel dual particulate guanylyl cyclase receptor agonist with renal-enhancing in vivo and ex vivo actions.

阅读:12
作者:Lee Candace Y W, Huntley Brenda K, McCormick Daniel J, Ichiki Tomoko, Sangaralingham S Jeson, Lisy Ondrej, Burnett John C Jr
AIMS: Cenderitide is a novel dual natriuretic peptide (NP) receptor chimeric peptide activator, which targets the particulate guanylyl cyclase B (pGC-B) receptor and pGC-A unlike native NPs. Cenderitide was engineered to retain the anti-fibrotic properties of C-type natriuretic peptide (CNP)/pGC-B with renal-enhancing actions facilitated by fusion to the carboxyl terminus of Dendroaspis NP (DNP), a pGC-A agonist, to CNP. Here, we address significance of the DNP carboxyl terminus in dual pGC receptor activation and actions of cenderitide compared with CNP on renal function and cyclic guanosine monophosphate (cGMP) in vivo and ex vivo in normal canines. METHODS AND RESULTS: In vitro, only cenderitide and not CNP or three CNP-based variants was a potent dual pGC-A/pGC-B activator of cGMP production (from 5 to 237 pmol/mL) in human embryonic kidney (HEK) 293 cells overexpressing human pGC-A while in pGC-B overexpressing cells cenderitide increased cGMP production (from 4 to 321 pmol/mL) while the three CNP-based variants were weak agonists. Based upon our finding that the DNP carboxyl terminus is a key structural requirement for dual pGC-A/pGC-B activation, we defined in vivo the renal-enhancing actions of cenderitide compared with CNP. Cenderitide increased urinary cGMP excretion (from 989 to 5977 pmol/mL), net generation of renal cGMP (821-4124 pmol/min), natriuresis (12-242 μEq/min), and glomerular filtration rate (GFR) (37-51 mL/min) while CNP did not. We then demonstrated the transformation of CNP ex vivo into a renal cGMP-activating peptide which increased cGMP in freshly isolated glomeruli eight-fold greater than CNP. CONCLUSION: The current study establishes that dual pGC-A and pGC-B activation with CNP requires the specific carboxyl terminus of DNP. In normal canines in vivo and in glomeruli ex vivo, the carboxyl terminus of DNP transforms CNP into a natriuretic and GFR-enhancing peptide. Future studies of cenderitide are warranted in cardiorenal disease states to explore its efficacy in overall cardiorenal homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。