hUC-MSCs ameliorated CUMS-induced depression by modulating complement C3 signaling-mediated microglial polarization during astrocyte-microglia crosstalk

hUC-MSCs 通过在星形胶质细胞-小胶质细胞串扰期间调节补体 C3 信号介导的小胶质细胞极化来改善 CUMS 引起的抑郁症

阅读:10
作者:Jing Li, Hualong Wang, Chongbo Du, Xiaojing Jin, Yuan Geng, Bing Han, Qinying Ma, Quanhai Li, Qian Wang, Yidi Guo, Mingwei Wang, Baoyong Yan

Background

Major depressive disorder (MDD) has been shown to be related to immune inflammation and the complement system. Previous studies have suggested that human umbilical cord mesenchymal stem cells (hUC-MSCs) play an important role in inflammatory diseases.

Conclusion

hUC-MSCs have therapeutic effects on anxiety-like and depressive-like phenotypes caused by CUMS. They can alter the polarization of microglia by inhibiting C3a-C3aR signaling to reduce neuroinflammation.

Methods

hUC-MSCs were administered into chronic unpredictable mild stress model (CUMS) mice through the tail vein once a week for 4 weeks. After the administration of hUC-MSCs, the depression-like and anxiety-like phenotypes, neuronal histopathology, synaptic-related protein expression and inflammatory index of the mice were assessed. Microglial M1/M2 polarization and the expression of C3a in astrocytes and C3aR in microglia was detected by immunofluorescence co-localization. Then, CUMS mice were injected with a C3aR antagonist, and the expression of C3a and C3aR and microglial polarization were observed.

Results

Based on the sucrose preference and tail suspension tests, hUC-MSCs ameliorated the depression-like behaviors of CUMS mice. Additionally, the anxiety-like behaviors of CUMS mice in the open-field and plus-maze tests were improved after the administration of hUC-MSCs. hUC-MSCs altered microglia polarization by alleviating complement C3a-C3aR signaling activation, which decreased pro-inflammatory factor levels and increased anti-inflammatory factor levels, alleviating neuronal damage and synaptic deficits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。