Automated construction of surface geometries of cardiac structures from volumetric medical images is important for a number of clinical applications. While deep-learning-based approaches have demonstrated promising reconstruction precision, these approaches have mostly focused on voxel-wise segmentation followed by surface reconstruction and post-processing techniques. However, such approaches suffer from a number of limitations including disconnected regions or incorrect surface topology due to erroneous segmentation and stair-case artifacts due to limited segmentation resolution. We propose a novel deep-learning-based approach that directly predicts whole heart surface meshes from volumetric CT and MR image data. Our approach leverages a graph convolutional neural network to predict deformation on mesh vertices from a pre-defined mesh template to reconstruct multiple anatomical structures in a 3D image volume. Our method demonstrated promising performance of generating whole heart reconstructions with as good or better accuracy than prior deep-learning-based methods on both CT and MR data. Furthermore, by deforming a template mesh, our method can generate whole heart geometries with better anatomical consistency and produce high-resolution geometries from lower resolution input image data. Our method was also able to produce temporally-consistent surface mesh predictions for heart motion from CT or MR cine sequences, and therefore can potentially be applied for efficiently constructing 4D whole heart dynamics. Our code and pre-trained networks are available at https://github.com/fkong7/MeshDeformNet.
A deep-learning approach for direct whole-heart mesh reconstruction.
阅读:3
作者:Kong Fanwei, Wilson Nathan, Shadden Shawn
| 期刊: | Med Image Anal | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 Dec;74:102222 |
| doi: | 10.1016/j.media.2021.102222 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
