Modeling critical interaction for metastasis between circulating tumor cells (CTCs) and platelets adhered to the capillary wall.

阅读:17
作者:Milosevic Miljan, Simic Vladimir, Nikolic Aleksandar, Shao Ning, Kawamura Hashimoto Chihiro, Godin Biana, Leonard Fransisca, Liu Xuewu, Kojic Milos
BACKGROUND AND OBJECTIVE: We used a 2D fluid-solid interaction (FSI) model to investigate the critical conditions for the arrest of the CTCs traveling through the narrowed capillary with a platelet attached to the capillary wall. This computational model allows us to determine the deformations and the progression of the passage of the CTC through different types of microvessels with platelet included. METHODS: The modeling process is obtained using the strong coupling approach following the remeshing procedure. Also, the 1D FE rope element for simulating active ligand-receptor bonds is implemented in our computational tool (described below). RESULTS: A relationship between the CTCs properties (size and stiffness), the platelet size and stiffness, and the ligand-receptor interaction intensity, on one side, and the time in contact between the CTCs and platelet and conditions for the cell arrest, on the other side, are determined. The model is further validated in vitro by using a microfluidic device with metastatic breast tumor cells. CONCLUSIONS: The computational framework that is presented, with accompanying results, can be used as a powerful tool to study biomechanical conditions for CTCs arrest in interaction with platelets, giving a prognosis of disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。