The main objective of this study was to investigate experimentally and numerically the behavior of basalt fiber-reinforced polymer (BFRP) reinforcement exposed to a combination of ultraviolet rays, humidity, and rain. Specifically, the effects of the previously stated harsh exposure on the serviceability performance and flexural capacity of BFRP reinforced concrete beams was examined. Holding the exposure parameter constant, the study also evaluated the effects of reinforcement ratio and beam detailing on the flexural capacity and the bond-dependent coefficient (k(b)) of the beams. Seven beams were cast and tested, four of which were reinforced with exposed BFRP bars, two were reinforced with unexposed BFRP bars, and one specimen was cast and reinforced with steel bars to serve as a benchmark specimen. The results indicate that the k(b) factor was averaged to be 0.61 for all the beams. Test results also indicate that increasing the reinforcement ratio did not result in a directly proportional increase in the moment capacity. The period of exposure did not cause any significant impact on the behavior of the over-reinforced beams. Thus, a finite element model was created to simulate the impact of exposure on the behavior of under-reinforced BFRP reinforced concrete beams.
Serviceability and Flexural Behavior of Concrete Beams Reinforced with Basalt Fiber-Reinforced Polymer (BFRP) Bars Exposed to Harsh Conditions.
阅读:6
作者:Alkhraisha Hakem, Mhanna Haya, Tello Noor, Abed Farid
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2020 | 起止号: | 2020 Sep 16; 12(9):2110 |
| doi: | 10.3390/polym12092110 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
