Golga5 is dispensable for mouse embryonic development and postnatal survival

Golga5 对于小鼠胚胎发育和出生后存活而言并非必不可少

阅读:8
作者:Lynessa J McGee, Alex L Jiang, Yu Lan

Abstract

Golgins are a family of coiled-coil proteins located at the cytoplasmic surface of the Golgi apparatus and have been implicated in maintaining Golgi structural integrity through acting as tethering factors for retrograde vesicle transport. Whereas knockdown of several individual golgins in cultured cells caused Golgi fragmentation and disruption of vesicle trafficking, analysis of mutant mouse models lacking individual golgins have discovered tissue-specific developmental functions. Recently, homozygous loss of function of GOLGA2, of which previous in vitro studies suggested an essential role in maintenance of Golgi structure and in mitosis, has been associated with a neuromuscular disorder in human patients, which highlights the need for understanding the developmental roles of the golgins in vivo. We report here generation of Golga5-deficient mice using CRISPR/Cas9-mediated genome editing. Although knockdown studies in cultured cells have implicated Golga5 in maintenance of Golgi organization, we show that Golga5 is not required for mouse embryonic development, postnatal survival, or fertility. Moreover, whereas Golga5 is structurally closely related to Golgb1, we show that inactivation of Golga5 does not enhance the severity of developmental defects in Golgb1-deficient mice. The Golga5-deficient mice enable further investigation of the roles and functional specificity of golgins in development and diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。