Uncertainty-aware prediction of chemical reaction yields with graph neural networks.

阅读:4
作者:Kwon Youngchun, Lee Dongseon, Choi Youn-Suk, Kang Seokho
In this paper, we present a data-driven method for the uncertainty-aware prediction of chemical reaction yields. The reactants and products in a chemical reaction are represented as a set of molecular graphs. The predictive distribution of the yield is modeled as a graph neural network that directly processes a set of graphs with permutation invariance. Uncertainty-aware learning and inference are applied to the model to make accurate predictions and to evaluate their uncertainty. We demonstrate the effectiveness of the proposed method on benchmark datasets with various settings. Compared to the existing methods, the proposed method improves the prediction and uncertainty quantification performance in most settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。