Learning to detect the onset of slow activity after a generalized tonic-clonic seizure.

阅读:3
作者:Vance Carroll, Kim Yejin, Zhang Guoqiang, Lhatoo Samden, Tao Shiqiang, Cui Licong, Li Xiaojin, Jiang Xiaoqian
BACKGROUND: Sudden death in epilepsy (SUDEP) is a rare disease in US, however, they account for 8-17% of deaths in people with epilepsy. This disease involves complicated physiological patterns and it is still not clear what are the physio-/bio-makers that can be used as an indicator to predict SUDEP so that care providers can intervene and treat patients in a timely manner. For this sake, UTHealth School of Biomedical Informatics (SBMI) organized a machine learning Hackathon to call for advanced solutions https://sbmi.uth.edu/hackathon/archive/sept19.htm . METHODS: In recent years, deep learning has become state of the art for many domains with large amounts data. Although healthcare has accumulated a lot of data, they are often not abundant enough for subpopulation studies where deep learning could be beneficial. Taking these limitations into account, we present a framework to apply deep learning to the detection of the onset of slow activity after a generalized tonic-clonic seizure, as well as other EEG signal detection problems exhibiting data paucity. RESULTS: We conducted ten training runs for our full method and seven model variants, statistically demonstrating the impact of each technique used in our framework with a high degree of confidence. CONCLUSIONS: Our findings point toward deep learning being a viable method for detection of the onset of slow activity provided approperiate regularization is performed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。