Clustering algorithm based on DINNSM and its application in gene expression data analysis.

阅读:5
作者:Li Zongjin, Song Changxin, Yang Jiyu, Jia Zeyu, Chen Dongzhen, Yan Chengying, Tian Liqin, Wu Xiaoming
BACKGROUND: Selecting an appropriate similarity measurement method is crucial for obtaining biologically meaningful clustering modules. Commonly used measurement methods are insufficient in capturing the complexity of biological systems and fail to accurately represent their intricate interactions. OBJECTIVE: This study aimed to obtain biologically meaningful gene modules by using the clustering algorithm based on a similarity measurement method. METHODS: A new algorithm called the Dual-Index Nearest Neighbor Similarity Measure (DINNSM) was proposed. This algorithm calculated the similarity matrix between genes using Pearson's or Spearman's correlation. It was then used to construct a nearest-neighbor table based on the similarity matrix. The final similarity matrix was reconstructed using the positions of shared genes in the nearest neighbor table and the number of shared genes. RESULTS: Experiments were conducted on five different gene expression datasets and compared with five widely used similarity measurement techniques for gene expression data. The findings demonstrate that when utilizing DINNSM as the similarity measure, the clustering results performed better than using alternative measurement techniques. CONCLUSIONS: DINNSM provided more accurate insights into the intricate biological connections among genes, facilitating the identification of more accurate and biological gene co-expression modules.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。