High-temperature phosphate adhesives are widely used in the aerospace and nuclear power industries. However, complex residual stresses can result when the curing temperature parameters are unreasonable due to the brittleness of the adhesive. To reveal the curing temperature mechanism affecting the bonding strength of the phosphate adhesives, several curing temperature curves (CT-1~6) were designed for the single lap joint (SLJ) using phosphate adhesive. The residual stress helped to reveal the relationship between the curing temperature parameters and the bonding performance. In this process, the residual stress of the silicon carbide joint was measured using micro-Raman spectroscopy, and the tensile strength of the joint was tested. A cohesive zone model (CZM) was established with Abaqus(®) to verify the results, and the numerical results from the model agreed well with the experimental values. The residual stress and adhesive strength were obviously affected by curing temperature. The reasonable curing temperature curves have the benefits of reducing the residual stress and improving the bonding strength.
Study of the Effect of Curing Residual Stress on the Bonding Strength of the Single Lap Joint Using a High-Temperature Phosphate Adhesive.
阅读:3
作者:Ma Chengkun, Tian Yuan, Gong Yan, Zhang Jifeng, Qi Hui, Wang Chao
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2018 | 起止号: | 2018 Jul 12; 11(7):1198 |
| doi: | 10.3390/ma11071198 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
