Differential Privacy via Haar Wavelet Transform and Gaussian Mechanism for Range Query.

阅读:5
作者:Chen Dong, Li Yanjuan, Chen Jiaquan, Bi Hongbo, Ding Xiajun
Range query is the hot topic of the privacy-preserving data publishing. To preserve privacy, the large range query means more accumulate noise will be injected into the input data. This study presents a research on differential privacy for range query via Haar wavelet transform and Gaussian mechanism. First, the noise injected into the input data via Laplace mechanism is analyzed, and we conclude that it is difficult to judge the level of privacy protection based on the Haar wavelet transform and Laplace mechanism for range query because the sum of independent random Laplace variables is not a variable of a Laplace distribution. Second, the method of injecting noise into Haar wavelet coefficients via Gaussian mechanism is proposed in this study. Finally, the maximum variance for any range query under the framework of Haar wavelet transform and Gaussian mechanism is given. The analysis shows that using Haar wavelet transform and Gaussian mechanism, we can preserve the differential privacy for each input data and any range query, and the variance of noise is far less than that just using the Gaussian mechanism. In an experimental study on the dataset age extracted from IPUM's census data of the United States, we confirm that the proposed mechanism has much smaller maximum variance of noises than the Gaussian mechanism for range-count queries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。