The efficiency of CUSUM schemes for monitoring the multivariate coefficient of variation in short runs process.

阅读:4
作者:Hu Xuelong, Ma Yixuan, Zhang Jiening, Zhang Jiujun, Yeganeh Ali, Shongwe Sandile Charles
Current monitoring technologies emphasize and address the issue of monitoring high-volume production processes. The high flexibility and diversity of current industrial production processes make monitoring technology for small batch processes even more important. In multivariate process monitoring, a broader applicability exists in multivariate coefficients of variation (MCV) based monitoring schemes due to the lower restriction of the process. In view of the effectiveness of MCV monitoring and with the aim to achieve further performance improvement of current MCV monitoring schemes in a finite horizon production, we additionally introduce two one-sided cumulative sum (CUSUM) MCV schemes. In the case of deterministic and random shifts, the design parameters of the proposed schemes are obtained via an optimization procedure designed by the Markov chain method and the corresponding performance is analysed based on different run length (RL) characteristics, including the mean and the standard deviation. Simulation comparisons with existing exponentially weighted moving average (EWMA) MCV schemes show that the proposed CUSUM MCV schemes are more efficient in monitoring most of the shifts, including the deterministic and random shifts. Finally, to demonstrate the benefits of the new monitoring schemes, a comprehensive case study on monitoring a steel sleeve manufacturing process is conducted.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。