Meta-analysis is used to aggregate the effects of interest across multiple studies, while its methodology is largely underexplored in mediation analysis, particularly in estimating the total mediation effect of high-dimensional omics mediators. Large-scale genomic consortia, such as the Trans-Omics for Precision Medicine (TOPMed) program, comprise multiple cohorts with diverse technologies to elucidate the genetic architecture and biological mechanisms underlying complex human traits and diseases. Leveraging the recent established asymptotic standard error of the R-squared (R2)-based mediation effect estimation for high-dimensional omics mediators, we have developed a novel meta-analysis framework requiring only summary statistics and allowing inter-study heterogeneity. Whereas the proposed meta-analysis can uniquely evaluate and account for potential effect heterogeneity across studies due to, for example, varying genomic profiling platforms, our extensive simulations showed that the developed method was more computationally efficient and yielded satisfactory operating characteristics comparable to analysis of the pooled individual-level data when there was no inter-study heterogeneity. We applied the developed method to 5 TOPMed studies with over 5800 participants to estimate the mediation effects of gene expression on age-related variation in systolic blood pressure and sex-related variation in high-density lipoprotein (HDL) cholesterol. The proposed method is available in R package MetaR2M on GitHub.
A novel statistical framework for meta-analysis of total mediation effect with high-dimensional omics mediators in large-scale genomic consortia.
阅读:4
作者:Xu Zhichao, Wei Peng
| 期刊: | PLoS Genetics | 影响因子: | 3.700 |
| 时间: | 2024 | 起止号: | 2024 Nov 19; 20(11):e1011483 |
| doi: | 10.1371/journal.pgen.1011483 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
