A nonparametric Bayesian continual reassessment method in single-agent dose-finding studies.

阅读:5
作者:Tang Niansheng, Wang Songjian, Ye Gen
BACKGROUND: The main purpose of dose-finding studies in Phase I trial is to estimate maximum tolerated dose (MTD), which is the maximum test dose that can be assigned with an acceptable level of toxicity. Existing methods developed for single-agent dose-finding assume that the dose-toxicity relationship follows a specific parametric potency curve. This assumption may lead to bias and unsafe dose escalations due to the misspecification of parametric curve. METHODS: This paper relaxes the parametric assumption of dose-toxicity relationship by imposing a Dirichlet process prior on unknown dose-toxicity curve. A hybrid algorithm combining the Gibbs sampler and adaptive rejection Metropolis sampling (ARMS) algorithm is developed to estimate the dose-toxicity curve, and a two-stage Bayesian nonparametric adaptive design is presented to estimate MTD. RESULTS: For comparison, we consider two classical continual reassessment methods (CRMs) (i.e., logistic and power models). Numerical results show the flexibility of the proposed method for single-agent dose-finding trials, and the proposed method behaves better than two classical CRMs under our considered scenarios. CONCLUSIONS: The proposed dose-finding procedure is model-free and robust, and behaves satisfactorily even in small sample cases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。