Higher-order polynomial functions can be used as a constitutive model to represent the mechanical behaviour of biological materials. The goal of this study was to present a method for assessing the fit of a given constitutive three-dimensional material model. Goodness of fit was assessed using multiple parameters including the root mean square error and Hotelling's T 2-test. Specifically, a polynomial model was used to characterise the stress-strain data, varying the number of model terms used (45 combinations of between 3 and 11 terms) and the manner of optimisation used to establish model coefficients (i.e. determining coefficients either by parameterisation of all data simultaneously or averaging coefficients obtained by parameterising individual data trials). This framework for model fitting helps to ensure that a given constitutive formulation provides the best characterisation of biological material mechanics.
A method for assessing the fit of a constitutive material model to experimental stress-strain data.
阅读:4
作者:Morrow Duane A, Donahue Tammy Haut, Odegard Gregory M, Kaufman Kenton R
| 期刊: | Computer Methods in Biomechanics and Biomedical Engineering | 影响因子: | 1.600 |
| 时间: | 2010 | 起止号: | 2010;13(2):247-56 |
| doi: | 10.1080/10255840903170686 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
