Background/Objectives: Cardiomegaly-defined as the abnormal enlargement of the heart-is a key radiological indicator of various cardiovascular conditions. Early detection is vital for initiating timely clinical intervention and improving patient outcomes. This study investigates the application of deep learning techniques for the automated diagnosis of cardiomegaly from chest X-ray (CXR) images, utilizing both convolutional neural networks (CNNs) and Vision Transformers (ViTs). Methods: We assembled one of the largest and most diverse CXR datasets to date, combining posteroanterior (PA) images from PadChest, NIH CXR, VinDr-CXR, and CheXpert. Multiple pre-trained CNN architectures (VGG16, ResNet50, InceptionV3, DenseNet121, DenseNet201, and AlexNet), as well as Vision Transformer models, were trained and compared. In addition, we introduced a novel stacking-based ensemble model-Combined Ensemble Learning Model (CELM)-that integrates complementary CNN features via a meta-classifier. Results: The CELM achieved the highest diagnostic performance, with a test accuracy of 92%, precision of 99%, recall of 89%, F1-score of 0.94, specificity of 92.0%, and AUC of 0.90. These results highlight the model's high agreement with expert annotations and its potential for reliable clinical use. Notably, Vision Transformers offered competitive performance, suggesting their value as complementary tools alongside CNNs. Conclusions: With further validation, the proposed CELM framework may serve as an efficient and scalable decision-support tool for cardiomegaly screening, particularly in resource-limited settings such as intensive care units (ICUs) and emergency departments (EDs), where rapid and accurate diagnosis is imperative.
CELM: An Ensemble Deep Learning Model for Early Cardiomegaly Diagnosis in Chest Radiography.
阅读:14
作者:Yanar Erdem, Hardalaç Fırat, Ayturan Kubilay
| 期刊: | Diagnostics | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Jun 25; 15(13):1602 |
| doi: | 10.3390/diagnostics15131602 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
