Load forecasting is crucial for the economic and secure operation of power systems. Extreme weather events, such as extreme heat and typhoons, can lead to more significant fluctuations in power consumption, making load forecasting more difficult. At present, due to the lack of relevant public data, the research on load forecasting under extreme weather events is still blank, so it is necessary to release a large-scale load dataset containing extreme weather events. The dataset includes electricity consumption data of industrial and commercial users under extreme weather events such as typhoons and extreme heat, which are collected at 15-minute intervals. The data is collected over six years from smart meters installed at the power entry points of users in southern China. The dataset consists of electricity consumption data from 386 industrial and commercial users in 17 industries, with more than 50 million records. During the recording period, extreme weather events such as typhoons and extreme heat are marked to form a total of 5,741 event records.
EWELD: A Large-Scale Industrial and Commercial Load Dataset in Extreme Weather Events.
阅读:10
作者:Liu Guolong, Liu Jinjie, Bai Yan, Wang Chengwei, Wang Haosheng, Zhao Huan, Liang Gaoqi, Zhao Junhua, Qiu Jing
| 期刊: | Scientific Data | 影响因子: | 6.900 |
| 时间: | 2023 | 起止号: | 2023 Sep 11; 10(1):615 |
| doi: | 10.1038/s41597-023-02503-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
