EWELD: A Large-Scale Industrial and Commercial Load Dataset in Extreme Weather Events.

阅读:3
作者:Liu Guolong, Liu Jinjie, Bai Yan, Wang Chengwei, Wang Haosheng, Zhao Huan, Liang Gaoqi, Zhao Junhua, Qiu Jing
Load forecasting is crucial for the economic and secure operation of power systems. Extreme weather events, such as extreme heat and typhoons, can lead to more significant fluctuations in power consumption, making load forecasting more difficult. At present, due to the lack of relevant public data, the research on load forecasting under extreme weather events is still blank, so it is necessary to release a large-scale load dataset containing extreme weather events. The dataset includes electricity consumption data of industrial and commercial users under extreme weather events such as typhoons and extreme heat, which are collected at 15-minute intervals. The data is collected over six years from smart meters installed at the power entry points of users in southern China. The dataset consists of electricity consumption data from 386 industrial and commercial users in 17 industries, with more than 50 million records. During the recording period, extreme weather events such as typhoons and extreme heat are marked to form a total of 5,741 event records.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。