HYPROSP: a hybrid protein secondary structure prediction algorithm--a knowledge-based approach.

阅读:3
作者:Wu Kuen-Pin, Lin Hsin-Nan, Chang Jia-Ming, Sung Ting-Yi, Hsu Wen-Lian
We develop a knowledge-based approach (called PROSP) for protein secondary structure prediction. The knowledge base contains small peptide fragments together with their secondary structural information. A quantitative measure M, called match rate, is defined to measure the amount of structural information that a target protein can extract from the knowledge base. Our experimental results show that proteins with a higher match rate will likely be predicted more accurately based on PROSP. That is, there is roughly a monotone correlation between the prediction accuracy and the amount of structure matching with the knowledge base. To fully utilize the strength of our knowledge base, a hybrid prediction method is proposed as follows: if the match rate of a target protein is at least 80%, we use the extracted information to make the prediction; otherwise, we adopt a popular machine-learning approach. This comprises our hybrid protein structure prediction (HYPROSP) approach. We use the DSSP and EVA data as our datasets and PSIPRED as our underlying machine-learning algorithm. For target proteins with match rate at least 80%, the average Q3 of PROSP is 3.96 and 7.2 better than that of PSIPRED on DSSP and EVA data, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。