A Bayesian Mixture Model for Predicting the COVID-19 Related Mortality in the United States.

阅读:4
作者:Kaciroti Niko A, Lumeng Carey, Parekh Vikas, Boulton Matthew L
An outbreak of SARS-CoV-2 has led to a global pandemic affecting virtually every country. As of August 31, 2020, globally, there have been approximately 25,500,000 confirmed cases and 850,000 deaths; in the United States (50 states plus District of Columbia), there have been more than 6,000,000 confirmed cases and 183,000 deaths. We propose a Bayesian mixture model to predict and monitor COVID-19 mortality across the United States. The model captures skewed unimodal (prolonged recovery) or multimodal (multiple surges) curves. The results show that across all states, the first peak dates of mortality varied between April 4, 2020 for Alaska and June 18, 2020 for Arkansas. As of August 31, 2020, 31 states had a clear bimodal curve showing a strong second surge. The peak date for a second surge ranged from July 1, 2020 for Virginia to September 12, 2020 for Hawaii. The first peak for the United States occurred about April 16, 2020-dominated by New York and New Jersey-and a second peak on August 6, 2020-dominated by California, Texas, and Florida. Reliable models for predicting the COVID-19 pandemic are essential to informing resource allocation and intervention strategies. A Bayesian mixture model was able to more accurately predict the shape of the mortality curves across the United States than other models, including the timing of multiple peaks. However, given the dynamic nature of the pandemic, it is important that the results be updated regularly to identify and better monitor future waves, and characterize the epidemiology of the pandemic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。