Although pancreatic cancer often invades peripancreatic adipose tissue, little information is known about cancer-adipocyte interaction. We first investigated the ability of adipocytes to de-differentiate to cancer-associated adipocytes (CAAs) by co-culturing with pancreatic cancer cells. We then examined the effects of CAA-conditioned medium (CAA-CM) on the malignant characteristics of cancer cells, the mechanism underlying those effects, and their clinical relevance in pancreatic cancer. When 3T3-L1 adipocytes were co-cultured with pancreatic cancer cells (PANC-1) using the Transwell system, adipocytes lost their lipid droplets and changed morphologically to fibroblast-like cells (CAA). Adipocyte-specific marker mRNA levels significantly decreased but those of fibroblast-specific markers appeared, characteristic findings of CAA, as revealed by real-time PCR. When PANC-1 cells were cultured with CAA-CM, significantly higher migration/invasion capability, chemoresistance, and epithelial-mesenchymal transition (EMT) properties were observed compared with control cells. To investigate the mechanism underlying these effects, we performed microarray analysis of PANC-1 cells cultured with CAA-CM and found a 78.5-fold higher expression of SAA1 compared with control cells. When the SAA1 gene in PANC-1 cells was knocked down with SAA1 siRNA, migration/invasion capability, chemoresistance, and EMT properties were significantly attenuated compared with control cells. Immunohistochemical analysis on human pancreatic cancer tissues revealed positive SAA1 expression in 46/61 (75.4%). Overall survival in the SAA1-positive group was significantly shorter than in the SAA1-negative group (PÂ =Â .013). In conclusion, we demonstrated that pancreatic cancer cells induced de-differentiation in adipocytes toward CAA, and that CAA promoted malignant characteristics of pancreatic cancer via SAA1 expression, suggesting that SAA1 is a novel therapeutic target in pancreatic cancer.
Cancer-associated adipocytes promote pancreatic cancer progression through SAA1 expression.
阅读:8
作者:Takehara Masanori, Sato Yasushi, Kimura Tetsuo, Noda Kazuyoshi, Miyamoto Hiroshi, Fujino Yasuteru, Miyoshi Jinsei, Nakamura Fumika, Wada Hironori, Bando Yoshimi, Ikemoto Tetsuya, Shimada Mitsuo, Muguruma Naoki, Takayama Tetsuji
| 期刊: | Cancer Science | 影响因子: | 4.300 |
| 时间: | 2020 | 起止号: | 2020 Aug;111(8):2883-2894 |
| doi: | 10.1111/cas.14527 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
