Dichotomous unimodal compound models: application to the distribution of insurance losses.

阅读:3
作者:Tomarchio Salvatore D, Punzo Antonio
A correct modelization of the insurance losses distribution is crucial in the insurance industry. This distribution is generally highly positively skewed, unimodal hump-shaped, and with a heavy right tail. Compound models are a profitable way to accommodate situations in which some of the probability masses are shifted to the tails of the distribution. Therefore, in this work, a general approach to compound unimodal hump-shaped distributions with a mixing dichotomous distribution is introduced. A 2-parameter unimodal hump-shaped distribution, defined on a positive support, is considered and reparametrized with respect to the mode and to another parameter related to the distribution variability. The compound is performed by scaling the latter parameter by means of a dichotomous mixing distribution that governs the tail behavior of the resulting model. The proposed model can also allow for automatic detection of typical and atypical losses via a simple procedure based on maximum a posteriori probabilities. Unimodal gamma and log-normal are considered as examples of unimodal hump-shaped distributions. The resulting models are firstly evaluated in a sensitivity study and then fitted to two real insurance loss datasets, along with several well-known competitors. Likelihood-based information criteria and risk measures are used to compare the models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。