H(+)-ATPase blockade reduced renal gluconeogenesis and plasma glucose in a diabetic rat model.

阅读:4
作者:Tojo Akihiro, Hatakeyama Saaya, Nangaku Masaomi, Ishimitsu Toshihiko
Vacuolar H(+)-adenosine triphosphatase (ATPase) plays important roles in urinary acid excretion, vesicular acidification to activate enzymes, and the membrane recycling of transporters in the kidney. As acidosis stimulates renal gluconeogenesis, we investigated the effect of blockade of H(+)-ATPase on renal gluconeogenesis in diabetic rats. Diabetes mellitus was induced by a single injection of streptozotocin, and a group of DM rats was treated with bafilomycin B1 intraperitoneally for 8 days. In diabetic rats, the renal expression and activity of H(+)-ATPase were increased with elevated urinary ammonium excretion. The blockade of H(+)-ATPase by bafilomycin B1 reduced the renal H(+)-ATPase activity and urinary ammonium excretion in diabetic rats. Treatment with bafilomycin suppressed the enhancement of the renal gluconeogenesis enzymes phosphoenol pyruvate carboxykinase and glucose-6-phosphatase in diabetic rats and reduced the renal cytoplasmic glucose levels, whereas hepatic gluconeogenesis did not change significantly. After a 24-h starvation period, bafilomycin decreased the plasma glucose level to a normal level in diabetic rats. The suppression of renal gluconeogenesis by an H(+)-ATPase inhibitor may therefore be a new therapeutic target for the treatment of diabetes mellitus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。