Medical imaging has acquired more attention due to the emerging design of wireless technologies, the internet, and data storage. The reflection of these technologies has gained attraction in medicine and medical sciences facilitating the diagnosis and treatment of different diseases in an effective manner. However, medical images are vulnerable to noise, which can make the image unclear and perplex the identification. Thus, denoising of medical images is imperative for processing medical images. This paper devises a novel optimal deep convolution neural network-based vectorial variation (ODVV) filter for denoising medical computed tomography (CT) images and Lena images. Here, the input medical images are fed to a noisy pixel map identification module wherein the deep convolutional neural network (Deep CNN) is adapted for discovering noisy pixel maps. Here, Deep CNN training is done with the Adam algorithm. Once noisy pixels are identified, it is further given to noise removal module which is performed using the proposed optimization algorithm, namely Feedback Artificial Lion (FAL). Here, the FAL is devised by combining the FAT and Lion algorithm. After noise removal, the pixel enhancement is performed using the vectorial total variation norm to get final pixel-enhanced image. The proposed FAL algorithm offered enhanced performance in contrast to other techniques with the highest peak signal-to-noise ratio (PSNR) of 24.149Â dB, highest second-derivative-like measure of enhancement (SDME) of 32.142Â dB, highest structural index similarity (SSIM) of 0.800, and Edge Preserve Index (EPI) of 0.9267.
Optimal Deep CNN-Based Vectorial Variation Filter for Medical Image Denoising.
阅读:4
作者:Atal, Dinesh, Kumar
| 期刊: | Journal of Digital Imaging | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Jun;36(3):1216-1236 |
| doi: | 10.1007/s10278-022-00768-8 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
