Temperature Experiment and Parameter Optimization of Cemented Carbide Tool in Milling 508III Steel.

阅读:4
作者:Cheng Yaonan, Gai Xiaoyu, Guan Rui, Jin Yingbo, Lu Mengda
In machining 508III steel, the cemented carbide tool is subjected to a strong periodic thermal load impact, leading to serious tool-chip adhesion and shortening the tool life. Considering the influence of cutting parameters on temperature, temperature experiments and finite element (FE) simulations were carried out based on Box-Behnken experimental design criteria in the response surface method (RSM). Based on the experimental results, A second-order polynomial regression prediction model for temperature was constructed as the optimization objective function based on RSM. A temperature prediction model based on GA-SVM was established to predict temperature change. Taking cutting temperature and efficiency as evaluation indicators, the elitist nondominated sorting genetic algorithm was used to optimize cutting parameters. These findings may be important for the tool life improvement and reasonable parameter selection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。