Hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young, is characterized by a diverse array of cardiac phenotypes evolving over several decades. We have developed transgenic rabbits that fully recapitulate the phenotype of human HCM and provide for the opportunity to delineate the sequence of evolution of cardiac phenotypes, and thus, the pathogenesis of HCM. We determined evolution of biochemical, molecular, histological, structural and functional phenotypes at 4 age-periods in 47 beta-myosin heavy chain-glutamine (MyHC-Q)-403 transgenic rabbits. Ca(+2) sensitivity of myofibrillar ATPase activity was reduced very early and in the absence of other discernible phenotypes. Myocyte disarray also occurred early, prior to, and independent of hypertrophy and fibrosis. The latter phenotypes evolved predominantly during puberty in conjunction with activation of stress-related signaling kinases. Myocardial contraction and relaxation velocities were decreased early despite normal global cardiac function and in the absence of histological phenotype. Global cardiac function declined with aging, while left atrial size was increased along with Doppler indices of left ventricular filling pressure. Thus, Ca(+2) sensitivity of myofibrillar ATPase activity is a primary phenotype expressed early and independent of the ensuing phenotypes. Pathogenesis of myocyte disarray, which exhibits age-independent penetrance, differs from those of hypertrophy and fibrosis, which show age-dependent expression. Myocardial dysfunction is an early marker that predicts subsequent development of hypertrophy. These findings in an animal model that recapitulates the phenotype of human HCM, implicate involvement of multiple independent mechanisms in the pathogenesis of cardiac phenotypes in HCM.
Evolution of expression of cardiac phenotypes over a 4-year period in the beta-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy.
阅读:5
作者:Nagueh Sherif F, Chen Suetnee, Patel Rajnikant, Tsybouleva Natalia, Lutucuta Silvia, Kopelen Helen A, Zoghbi William A, Quiñones Miguel A, Roberts Robert, Marian A J
| 期刊: | Journal of Molecular and Cellular Cardiology | 影响因子: | 4.700 |
| 时间: | 2004 | 起止号: | 2004 May;36(5):663-73 |
| doi: | 10.1016/j.yjmcc.2004.02.010 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
