Estimation of linkage disequilibrium and effective population size in New Zealand sheep using three different methods to create genetic maps.

阅读:7
作者:Prieur Vincent, Clarke Shannon M, Brito Luiz F, McEwan John C, Lee Michael A, Brauning Rudiger, Dodds Ken G, Auvray Benoît
BACKGROUND: Investments in genetic selection have played a major role in the New Zealand sheep industry competitiveness. Selection may erode genetic diversity, which is a crucial factor for the success of breeding programs. Better understanding of linkage disequilibrium (LD) and ancestral effective population size (N(e)) through quantifying this diversity and comparison between populations allows for more informed decisions with regards to selective breeding taking population genetic diversity into account. The estimation of N (e) can be determined via genetic markers and requires knowledge of genetic distances between these markers. Single nucleotide polymorphisms (SNP) data from a sample of 12,597 New Zealand crossbred and purebred sheep genotyped with the Illumina Ovine SNP50 BeadChip was used to perform a genome-wide scan of LD and N (e) . Three methods to estimate genetic distances were investigated: 1) M1: a ratio fixed across the whole genome of one Megabase per centiMorgan; 2) M2: the ratios of genetic distance (using M3, below) over physical distance fixed for each chromosome; and, 3) M3: a genetic map of inter-SNP distances estimated using CRIMAP software (v2.503). RESULTS: The estimates obtained with M2 and M3 showed much less variability between autosomes than those with M1, which tended to give lower N (e) results and higher LD decay. The results suggest that N (e) has decreased since the development of sheep breeds in Europe and this reduction in N(e) has been accelerated in the last three decades. The N (e) estimated for five generations in the past ranged from 71 to 237 for Texel and Romney breeds, respectively. A low level of genetic kinship and inbreeding was estimated in those breeds suggesting avoidance of mating close relatives. CONCLUSIONS: M3 was considered the most accurate method to create genetic maps for the estimation of LD and N(e). The findings of this study highlight the history of genetic selection in New Zealand crossbred and purebred sheep and these results will be very useful to understand genetic diversity of the population with respect to genetic selection. In addition, it will help geneticists to identify genomic regions which have been preferentially selected within a variety of breeds and populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。