Genomic prediction for multiple environments can aid the selection of genotypes suited to specific soil and climate conditions. Methodological advances allow effective integration of phenotypic, genomic (additive, nonadditive), and large-scale environmental (enviromic) data into multi-environmental genomic prediction models. These models can also account for genotype-by-environment interaction, utilize alternative relationship matrices (kernels), or substitute statistical approaches with deep learning. However, the application of multi-environmental genomic prediction in apple remained limited, likely due to the challenge of building multi-environmental datasets and structurally complex models. Here, we applied efficient statistical and deep learning models for multi-environmental genomic prediction of eleven apple traits with contrasting genetic architectures by integrating genomic- and enviromic-based model components. Incorporating genotype-by-environment interaction effects into statistical models improved predictive ability by up to 0.08 for nine traits compared to the benchmark model. This outcome, based on Gaussian and Deep kernels, shows these alternatives can effectively substitute the standard genomic best linear unbiased predictor (G-BLUP). Including nonadditive and enviromic-based effects resulted in a predictive ability very similar to the benchmark model. The deep learning approach achieved the highest predictive ability for three traits with oligogenic genetic architectures, outperforming the benchmark by up to 0.10. Our results demonstrate that the tested statistical models capture genotype-by-environment interactions particularly well, and the deep learning models efficiently integrate data from diverse sources. This study will foster the adoption of multi-environmental genomic prediction to select apple cultivars adapted to diverse environmental conditions, providing an opportunity to address climate change impacts.
Integrative multi-environmental genomic prediction in apple.
阅读:7
作者:Jung Michaela, Quesada-Traver Carles, Roth Morgane, Aranzana Maria José, Muranty Hélène, Rymenants Marijn, Guerra Walter, Holzknecht Elias, Pradas Nicole, Lozano Lidia, Didelot Frédérique, Laurens François, Yates Steven, Studer Bruno, Broggini Giovanni A L, Patocchi Andrea
| 期刊: | Horticulture Research | 影响因子: | 8.500 |
| 时间: | 2025 | 起止号: | 2024 Nov 20; 12(2):uhae319 |
| doi: | 10.1093/hr/uhae319 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
