Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle.

阅读:3
作者:Sanchez Marie-Pierre, Govignon-Gion Armelle, Croiseau Pascal, Fritz Sébastien, Hozé Chris, Miranda Guy, Martin Patrice, Barbat-Leterrier Anne, Letaïef Rabia, Rocha Dominique, Brochard Mickaël, Boussaha Mekki, Boichard Didier
BACKGROUND: Genome-wide association studies (GWAS) were performed at the sequence level to identify candidate mutations that affect the expression of six major milk proteins in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) dairy cattle. Whey protein (α-lactalbumin and β-lactoglobulin) and casein (αs1, αs2, β, and κ) contents were estimated by mid-infrared (MIR) spectrometry, with medium to high accuracy (0.59 ≤ R(2) ≤ 0.92), for 848,068 test-day milk samples from 156,660 cows in the first three lactations. Milk composition was evaluated as average test-day measurements adjusted for environmental effects. Next, we genotyped a subset of 8080 cows (2967 MON, 2737 NOR, and 2306 HOL) with the BovineSNP50 Beadchip. For each breed, genotypes were first imputed to high-density (HD) using HD single nucleotide polymorphisms (SNPs) genotypes of 522 MON, 546 NOR, and 776 HOL bulls. The resulting HD SNP genotypes were subsequently imputed to the sequence level using 27 million high-quality sequence variants selected from Run4 of the 1000 Bull Genomes consortium (1147 bulls). Within-breed, multi-breed, and conditional GWAS were performed. RESULTS: Thirty-four distinct genomic regions were identified. Three regions on chromosomes 6, 11, and 20 had very significant effects on milk composition and were shared across the three breeds. Other significant effects, which partially overlapped across breeds, were found on almost all the autosomes. Multi-breed analyses provided a larger number of significant genomic regions with smaller confidence intervals than within-breed analyses. Combinations of within-breed, multi-breed, and conditional analyses led to the identification of putative causative variants in several candidate genes that presented significant protein-protein interactions enrichment, including those with previously described effects on milk composition (SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6) and those with effects reported for the first time here (ALPL, ANKH, PICALM). CONCLUSIONS: GWAS applied to fine-scale phenotypes, multiple breeds, and whole-genome sequences seems to be effective to identify candidate gene variants. However, although we identified functional links between some candidate genes and milk phenotypes, the causality between candidate variants and milk protein composition remains to be demonstrated. Nevertheless, the identification of potential causative mutations that underlie milk protein composition may have immediate applications for improvements in cheese-making.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。