Study on the mechanical properties and microscopic evolution mechanisms of weathered granite soil.

阅读:3
作者:Wang Yizhao, Jia Ruiling, Li Yadong, Yang Kezheng, Cui Jie, Shan Yi
Studying the effects of weathering on the mechanical properties and microscopic evolution of weathered granite soil (WGS) is essential for connecting microstructure with macroscopic behavior. This study conducts systematic monotonic and cyclic triaxial tests, along with a series of microscopic tests on WGS samples, to explore the influence of weathering on WGS mechanical properties and the mechanism of granite weathering. Results indicate that both effective internal friction angle and effective cohesion decrease progressively with increased weathering. Completely weathered granite (CWG) exhibits greater dynamic strength compared to granite residual soil (GRS). Additionally, as weathering progresses, quartz fragments are lost, while feldspar and biotite weather to form secondary minerals such as kaolinite and illite, leading to an overall enrichment in aluminum and iron in the granite. Weathering causes structural deterioration of WGS. Finally, the mechanical parameters of WGS and their chemical weathering indices show a coefficient of determination ranging from 60 to 99%. This study helps elucidate the fundamental causes of performance changes in WGS, thereby optimizing engineering design and enhancing disaster prediction accuracy, while providing new research perspectives and experimental evidence for WGS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。