Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data.

阅读:4
作者:Rashid Md Mamunur, Selvarajoo Kumar
The inherent heterogeneity of cancer contributes to highly variable responses to any anticancer treatments. This underscores the need to first identify precise biomarkers through complex multi-omics datasets that are now available. Although much research has focused on this aspect, identifying biomarkers associated with distinct drug responders still remains a major challenge. Here, we develop MOMLIN, a multi-modal and -omics machine learning integration framework, to enhance drug-response prediction. MOMLIN jointly utilizes sparse correlation algorithms and class-specific feature selection algorithms, which identifies multi-modal and -omics-associated interpretable components. MOMLIN was applied to 147 patients' breast cancer datasets (clinical, mutation, gene expression, tumor microenvironment cells and molecular pathways) to analyze drug-response class predictions for non-responders and variable responders. Notably, MOMLIN achieves an average AUC of 0.989, which is at least 10% greater when compared with current state-of-the-art (data integration analysis for biomarker discovery using latent components, multi-omics factor analysis, sparse canonical correlation analysis). Moreover, MOMLIN not only detects known individual biomarkers such as genes at mutation/expression level, most importantly, it correlates multi-modal and -omics network biomarkers for each response class. For example, an interaction between ER-negative-HMCN1-COL5A1 mutations-FBXO2-CSF3R expression-CD8 emerge as a multimodal biomarker for responders, potentially affecting antimicrobial peptides and FLT3 signaling pathways. In contrast, for resistance cases, a distinct combination of lymph node-TP53 mutation-PON3-ENSG00000261116 lncRNA expression-HLA-E-T-cell exclusions emerged as multimodal biomarkers, possibly impacting neurotransmitter release cycle pathway. MOMLIN, therefore, is expected advance precision medicine, such as to detect context-specific multi-omics network biomarkers and better predict drug-response classifications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。