Assessing particle count in electron microscopy measurements of nanomaterials to support regulatory guidance.

阅读:4
作者:Wouters Charlotte, Kestens Vikram, Verleysen Eveline, Mast Jan
In the European Union, nanomaterials are regulated through different pieces of sectoral legislation. This legislation often requires risk assessments and thus reliable characterization data, for which regulatory guidance generally recommend electron microscopy. The guidance provides best practices for measurements but lacks requirements on how many particles to measure. Using transmission electron microscopy data of nanomaterials, a strategy based on repeated subsampling is proposed to establish, for different particle size and shape measurands, mathematical relationships between particle count and precision, and subsequently to determine the minimum particle count. Our results confirm that the minimum particle count generally depends on the width of the size and shape distributions and that the median of the distribution can be determined with the highest precision compared to other percentiles. Upon combining the precision uncertainty related to particle number with uncertainties from other sources, such as sample preparation, calibration and trueness, we reach an optimal particle count above which additional particle measurements only yield negligible improvements to the combined measurement uncertainty. Our findings offer an experimental approach for determining the minimum particle count to measure particle size and shape by electron microscopy. It enables efficient analyses and facilitates compliance with legislation addressing nanomaterials across various application domains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。