The emergence of geographical information systems and related softwares nowadays enables medical databases to incorporate the geographical information on patients, allowing studies in spatial associations. Public health administrators and researchers are often interested in detecting variation in survival patterns by region or county in order to understand the possible factors that contribute towards such spatial discrepancies. These issues have led statisticians to develop survival models that account for spatial clustering and variation. Additionally, with rapid developments in medical and health sciences, researchers increasingly encounter data sets where a substantial portion of patients are cured. Models accounting for cure in the population assist in the prognosis of potentially terminal diseases. This article proposes a Bayesian modelling framework that models spatial associations for areally referenced survival data using a general class of cure models proposed by Cooner et al. The special models we outline are alternatives to the traditional proportional hazards models and can be fitted using standard Bayesian software such as WinBUGS.
Modelling geographically referenced survival data with a cure fraction.
阅读:4
作者:Cooner Freda, Banerjee Sudipto, McBean A Marshall
| 期刊: | Statistical Methods in Medical Research | 影响因子: | 1.900 |
| 时间: | 2006 | 起止号: | 2006 Aug;15(4):307-24 |
| doi: | 10.1191/0962280206sm453oa | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
