Metabolomic Insights into Smoking-Induced Metabolic Dysfunctions: A Comprehensive Analysis of Lipid and Amino Acid Metabolomes.

阅读:7
作者:Aslam Muhammad Amtiaz, Iqbal Hajra, Ilyas Kainat, Rehman Kanwal, Hussain Amjad, Akash Muhammad Sajid Hamid, Shahid Mudassar, Chen Shuqing
BACKGROUND: Cigarette smoking is a leading cause of preventable mortality, largely due to the absence of effective, non-invasive biomarkers for early disease detection. Profiling serum metabolomics to identify metabolic changes holds the potential to accelerate the detection process and identify individuals at risk of developing smoking-related diseases. OBJECTIVES: This study investigated the biochemical and metabolomic changes induced by nicotine exposure, with a focus on disruptions in amino acid, lipid, and carbohydrate metabolism. METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to observe significant disruptions in lipid and amino acid metabolism, along with alterations in key metabolic pathways. A total of 400 smokers and 100 non-smokers were included to evaluate the biomarkers related to insulin resistance, blood lipid profile, inflammation, and kidney and liver function. RESULTS: The results demonstrated significantly elevated (p < 0.05) levels of glycemic markers in smokers, including fasting blood glucose; glycated hemoglobin (HbA1c); and inflammatory markers such as interleukin-6 (IL-6) and C-reactive protein (CRP). Smokers also exhibited dyslipidemia, with increased total cholesterol (154.888 ± 35.565) and LDL levels (117.545 ± 24.138). Impaired liver and kidney function was evident, with significantly higher levels (p < 0.05) of AST, ALP, ALT, blood urea nitrogen, and creatinine in smokers. A total of 930 metabolites were identified, of which 343 exhibited significant alterations (p < 0.05) in smokers compared to non-smokers. Among these, 116 metabolites were upregulated, and 127 were downregulated. Metabolomic pathway analysis revealed eight significant pathways. The study also identified three lipid metabolites specific to smokers and seven unique to non-smokers. Through LC-MS/MS, fragments of phenylalanine, tryptophan, valine, histidine, carnitine, and sphinganine were detected. Several lipidomic changes associated with insulin resistance and cardiovascular complications were observed. Cadmium (Cd) levels were higher in smokers than non-smokers (1.264 ppb vs. 0.624 ppb) and showed a strong negative correlation (R(2) = 0.8061, p-value = 0.015) with serum zinc (Zn), likely due to Cd displacing Zn in proteins and causing nephrotoxicity through accumulation. CONCLUSIONS: This study highlights the distinct metabolic disruptions caused by smoking that could serve as potential biomarkers for the early detection of metabolic diseases. It emphasizes the importance of metabolomics in identifying systemic indicators of smoking-related health issues, providing new opportunities for preventive and therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。