Precise and robust wind power prediction can effectively alleviate the problem caused by the randomness and volatility of wind power. Ensemble learning can successfully improve forecasting precision and robustness, and quantify the uncertainty of the prediction. This paper presents a new ensemble probabilistic forecasting framework, based on modified randomized maximum a posteriori (MAP) sampling technique, echo state network (ESN) and generalized mixture (GM) function to bring superior forecasting results. The proposed model first trains a set of independent ESN models for probabilistic forecasting using the modified randomized MAP sampling technique, and then dynamically weighs and ensembles the base model forecasting through the GM function. The proposed model and other benchmark models have been implemented on four wind power datasets from different places to illustrate the advantage of the proposed method. The compared result indicates that the suggested model outperforms some state-of-the-art models and can successfully achieve dynamic ensemble probabilistic prediction.
A novel Bayesian ensembling model for wind power forecasting.
阅读:4
作者:Tang Jingwei, Hu Jianming, Heng Jiani, Liu Zhi
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2022 | 起止号: | 2022 Nov 17; 8(11):e11599 |
| doi: | 10.1016/j.heliyon.2022.e11599 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
