Seizure susceptibility is associated with altered protein expression of voltage-gated calcium channel subunits in inferior colliculus neurons of the genetically epilepsy-prone rat

癫痫易感性与遗传性癫痫易感大鼠下丘神经元电压门控钙通道亚基蛋白质表达改变有关

阅读:4
作者:Prosper N'Gouemo, Robert Yasuda, Carl L Faingold

Abstract

The inferior colliculus (IC) is the consensus site for seizure initiation in the genetically epilepsy-prone rat (GEPR). We have previously reported that the current density of high threshold voltage-activated (HVA) calcium (Ca(2+)) channels was markedly enhanced in IC neurons of the GEPR-3 (moderate seizure severity substrain of the GEPR). The present study examines whether subunit protein levels of HVA Ca(2+) channels are altered in IC neurons that exhibit enhanced Ca(2+) current density. Quantification shows that the levels of protein expression of the Ca(2+) channel pore-forming alpha1D (L-type) and alpha1E subunits (R-type) were significantly increased in IC neurons of seizure-naive GEPR-3s (SN-GEPR-3s) compared to control Sprague-Dawley (SD) rats. Significant increases and decreases in the levels of protein expression of Ca(2+) channel regulatory beta3 and alpha2delta subunits occurred in IC neurons of SN-GEPR-3s compared to control SD rats, respectively. No changes occurred in the protein expression of Ca(2+) channel pore-forming alpha1A (P/Q-type), alpha1B (N-type) and alpha1C (L-type) subunits in IC neurons of SN-GEPR-3s compared to control SD rats. A single seizure selectively enhanced protein expression of Ca(2+) channel alpha1A subunits in IC neurons of GEPR-3s. Thus, up-regulation of Ca(2+) channel alpha1D and alpha1E subunits may represent the molecular mechanisms for the enhanced current density of L- and R-type of HVA Ca(2+) channels in IC neurons of the GEPR, and may contribute to the genetic basis of their enhanced seizure susceptibility. The up-regulation of Ca(2+) channel alpha1A subunits induced by seizures may contribute to the increasing IC neuronal excitability that results from repetitive seizures in the GEPR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。