This study proposed a pressure driven entropy method (PDEM) that determines a priority order of pressure gauge locations, which enables the impact of abnormal condition (e.g., pipe failures) to be quantitatively identified in water distribution networks (WDNs). The method developed utilizes the entropy method from information theory and pressure driven analysis (PDA), which is the latest hydraulic analysis method. The conventional hydraulic approach has problems in determining the locations of pressure gauges, attributable to unrealistic results under abnormal conditions (e.g., negative pressure). The proposed method was applied to two benchmark pipe networks and one real pipe network. The priority order for optimal locations was produced, and the result was compared to existing approach. The results of the conventional method show that the pressure reduction difference of each node became so excessive, which resulted in a distorted distribution. However, with the method developed, which considers the connectivity of a system and the influence among nodes based on PDA and entropy method results, pressure gauges can be more realistically and reasonably located.
Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation.
阅读:4
作者:Yoo Do Guen, Chang Dong Eil, Song Yang Ho, Lee Jung Ho
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2018 | 起止号: | 2018 Aug 4; 20(8):576 |
| doi: | 10.3390/e20080576 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
