Multistability in neural systems with random cross-connections.

阅读:5
作者:Breffle Jordan, Mokashe Subhadra, Qiu Siwei, Miller Paul
Neural circuits with multiple discrete attractor states could support a variety of cognitive tasks according to both empirical data and model simulations. We assess the conditions for such multistability in neural systems using a firing rate model framework, in which clusters of similarly responsive neurons are represented as single units, which interact with each other through independent random connections. We explore the range of conditions in which multistability arises via recurrent input from other units while individual units, typically with some degree of self-excitation, lack sufficient self-excitation to become bistable on their own. We find many cases of multistability-defined as the system possessing more than one stable fixed point-in which stable states arise via a network effect, allowing subsets of units to maintain each others' activity because their net input to each other when active is sufficiently positive. In terms of the strength of within-unit self-excitation and standard deviation of random cross-connections, the region of multistability depends on the response function of units. Indeed, multistability can arise with zero self-excitation, purely through zero-mean random cross-connections, if the response function rises supralinearly at low inputs from a value near zero at zero input. We simulate and analyze finite systems, showing that the probability of multistability can peak at intermediate system size, and connect with other literature analyzing similar systems in the infinite-size limit. We find regions of multistability with a bimodal distribution for the number of active units in a stable state. Finally, we find evidence for a log-normal distribution of sizes of attractor basins, which produces Zipf's Law when enumerating the proportion of trials within which random initial conditions lead to a particular stable state of the system.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。