Simulation Extrapolation Method for Cox Regression Model with a Mixture of Berkson and Classical Errors in the Covariates using Calibration Data.

阅读:12
作者:Tapsoba Jean de Dieu, Chao Edward C, Wang Ching-Yun
Many biomedical or epidemiological studies often aim to assess the association between the time to an event of interest and some covariates under the Cox proportional hazards model. However, a problem is that the covariate data routinely involve measurement error, which may be of classical type, Berkson type or a combination of both types. The issue of Cox regression with error-prone covariates has been well-discussed in the statistical literature, which has focused mainly on classical error so far. This paper considers Cox regression analysis when some covariates are possibly contaminated with a mixture of Berkson and classical errors. We propose a simulation extrapolation-based method to address this problem when two replicates of the mismeasured covariates are available along with calibration data for some subjects in a subsample only. The proposed method places no assumption on the mixture percentage. Its finite-sample performance is assessed through a simulation study. It is applied to the analysis of data from an AIDS clinical trial study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。