This study investigates how various 3D printing parameters influence mechanical properties, specifically strength in compression and low-velocity impact (LVI) tests, and identifies the best printing parameters (layer thickness, nozzle diameter, and infill density) that lead to durable samples. Utilizing a Taguchi L(9) orthogonal array, the study systematically examined the effects of three critical 3D printing parameters on the mechanical strength of cubic test samples. Nine experimental configurations were tested, each subjected to compression and LVI tests according to ASTM standards. Statistical analyses, including analysis of variance (ANOVA) and grey relational analysis (GRA), were employed to evaluate parameter significance and optimize results. Infill density significantly influenced the compression tests, while nozzle diameter was the most impactful parameter in LVI tests. Layer thickness had a minimal influence on both outcomes. Additionally, applying GRA revealed that optimal 3D printing parameters differ when considering the two mechanical properties simultaneously, highlighting the complexity of achieving balanced performance in 3D-printed structures. The application of the Taguchi method to optimize 3D printing parameters improved the mechanical properties of printed materials while significantly reducing the number of required experiments. By employing an efficient experimental design, this research demonstrates how to achieve high-quality results in compression and LVI tests with minimal resource use and time investment. Additionally, integrating GRA for the simultaneous optimization of multiple performance characteristics further enhances the practical applicability of the findings in additive manufacturing.
Multi-Objective Optimization of Low-Velocity Impact and Compression Behavior of 3D-Printed PLA Cubic Samples.
阅读:3
作者:Dogan Oguz, Kamer Muhammed S, Sahan Mehmet F
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 26; 17(5):627 |
| doi: | 10.3390/polym17050627 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
