Effects of selenium supplementation on diet-induced obesity in mice with a disruption of the selenocysteine lyase gene

硒补充对硒代半胱氨酸裂解酶基因破坏的小鼠饮食诱导性肥胖的影响

阅读:5
作者:Ligia M Watanabe, Ann C Hashimoto, Daniel J Torres, Marla J Berry, Lucia A Seale

Background

The amino acid selenocysteine (Sec) is an integral part of selenoproteins, a class of proteins mostly involved in strong redox reactions. The enzyme Sec lyase (SCLY) decomposes Sec into selenide allowing for the recycling of the selenium (Se) atom via the selenoprotein synthesis machinery. We previously demonstrated that disruption of the Scly gene (Scly KO) in mice leads to the development of obesity and metabolic syndrome, with effects on glucose homeostasis, worsened by Se deficiency or a high-fat diet, and exacerbated in male mice. Our

Conclusion

These results unveil sex- and selenocompound-specific regulation of energy metabolism after the loss of Scly, pointing to a role of this enzyme in the control of whole-body energy metabolism regardless of Se levels.

Methods

Three-weeks old male and female Scly KO mice were fed in separate experiments a diet containing 45 % kcal fat and either sodium selenite or a mixture of sodium selenite and selenomethionine (selenite/SeMet) at moderate (0.25 ppm) or high (0.5-1 ppm) levels for 9 weeks, and assessed for metabolic parameters, oxidative stress and expression of selenoproteins.

Results

Se supplementation was unable to prevent obesity and elevated epididymal white adipose tissue weights in male Scly KO mice. Serum glutathione peroxidase activity in Scly KO mice was unchanged regardless of sex or dietary Se intake; however, supplementation with a mixture of selenite/SeMet improved oxidative stress biomarkers in the male Scly KO mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。