Optimal Design of a Leaf Flexure Compliant Mechanism Based on 2-DOF Tuned Mass Damping Stage Analysis.

阅读:4
作者:Chang Yung-Sheng, Kieu Vu N D, Huang Shyh-Chour
This study proposed an innovative design of a leaf flexural-based 2-DOF tuned mass damping stage that can be integrated into a micro-electromechanical system precision positioning stage to reduce the displacement response of the precision positioning stage excited by a specific vibration frequency and to achieve the damping effect and vibration reduction without adding viscous damping materials. A prototype that conforms to dual-axis decoupling and has 2-DOF translation capability was designed using parallel and vertical arrangements of a leaf flexure. The Taguchi design method and the finite element method were used on the relevant design parameters of the primary mass stage to determine the best size configuration for the maximum off-axial stiffness ratio and the parameters of the tuned mass damper closest to the natural frequency of the primary mass stage with the minimum deflection. In addition, an optimization module, based on a genetic algorithm (GA), was used to optimize the design of the flexure size of the tuned mass damper. Finally, experiments were conducted, the vibration displacement response of the primary mass stage was observed, and the effect with or without the addition of tuned mass damping on the system vibration response was compared. The results indicate that the tuned mass damper can effectively reduce the response amplitude of the stage, where the maximum reduction rate in the experiment was 63.0442%, and the mass of the damper was highly positively correlated with the amplitude reduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。