Analysis of Kernel Matrices via the von Neumann Entropy and Its Relation to RVM Performances.

阅读:8
作者:Belanche-Muñoz Lluís A, Wiejacha Małgorzata
Kernel methods have played a major role in the last two decades in the modeling and visualization of complex problems in data science. The choice of kernel function remains an open research area and the reasons why some kernels perform better than others are not yet understood. Moreover, the high computational costs of kernel-based methods make it extremely inefficient to use standard model selection methods, such as cross-validation, creating a need for careful kernel design and parameter choice. These reasons justify the prior analyses of kernel matrices, i.e., mathematical objects generated by the kernel functions. This paper explores these topics from an entropic standpoint for the case of kernelized relevance vector machines (RVMs), pinpointing desirable properties of kernel matrices that increase the likelihood of obtaining good model performances in terms of generalization power, as well as relate these properties to the model's fitting ability. We also derive a heuristic for achieving close-to-optimal modeling results while keeping the computational costs low, thus providing a recipe for efficient analysis when processing resources are limited.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。