scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.

阅读:3
作者:Zheng Xiao, Huang Yuan, Zou Xiufen
Disease development and cell differentiation both involve dynamic changes; therefore, the reconstruction of dynamic gene regulatory networks (DGRNs) is an important but difficult problem in systems biology. With recent technical advances in single-cell RNA sequencing (scRNA-seq), large volumes of scRNA-seq data are being obtained for various processes. However, most current methods of inferring DGRNs from bulk samples may not be suitable for scRNA-seq data. In this work, we present scPADGRN, a novel DGRN inference method using "time-series" scRNA-seq data. scPADGRN combines the preconditioned alternating direction method of multipliers with cell clustering for DGRN reconstruction. It exhibits advantages in accuracy, robustness and fast convergence. Moreover, a quantitative index called Differentiation Genes' Interaction Enrichment (DGIE) is presented to quantify the interaction enrichment of genes related to differentiation. From the DGIE scores of relevant subnetworks, we infer that the functions of embryonic stem (ES) cells are most active initially and may gradually fade over time. The communication strength of known contributing genes that facilitate cell differentiation increases from ES cells to terminally differentiated cells. We also identify several genes responsible for the changes in the DGIE scores occurring during cell differentiation based on three real single-cell datasets. Our results demonstrate that single-cell analyses based on network inference coupled with quantitative computations can reveal key transcriptional regulators involved in cell differentiation and disease development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。