Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis.

阅读:4
作者:Navega David, Costa Ernesto, Cunha Eugénia
Age-at-death assessment is a crucial step in the identification process of skeletal human remains. Nonetheless, in adult individuals this task is particularly difficult to achieve with reasonable accuracy due to high variability in the senescence processes. To improve the accuracy of age-at-estimation, in this work we propose a new method based on a multifactorial macroscopic analysis and deep random neural network models. A sample of 500 identified skeletons was used to establish a reference dataset (age-at-death: 19-101 years old, 250 males and 250 females). A total of 64 skeletal traits are covered in the proposed macroscopic technique. Age-at-death estimation is tackled from a function approximation perspective and a regression approach is used to infer both point and prediction interval estimates. Based on cross-validation and computational experiments, our results demonstrate that age estimation from skeletal remains can be accurately (~6 years mean absolute error) inferred across the entire adult age span and informative estimates and prediction intervals can be obtained for the elderly population. A novel software tool, DRNNAGE, was made available to the community.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。