Spatiotemporal (ST) graph modeling has garnered increasing attention recently. Most existing methods rely on a predefined graph structure or construct a single learnable graph throughout training. However, it is challenging to use a predefined graph structure to capture dynamic ST changes effectively due to evolving node relationships over time. Furthermore, these methods typically utilize only the original data, neglecting external temporal factors. Therefore, we put forward a novel time-varying graph convolutional network model that integrates external factors for multifeature ST series prediction. Firstly, we construct a time-varying adjacency matrix using attention to capture dynamic spatial relationships among nodes. The graph structure adapts over time during training, validation, and testing phases. Then, we model temporal dependence by dilated causal convolution, leveraging gated activation unit and residual connection. Notably, the prediction accuracy is enhanced through the incorporation of embedding absolute time and the fusion of multifeature. This model has been applied to three real-world multifeature datasets, achieving state-of-the-art performance in all cases. Experiments show that the method has high accuracy and robustness when applied to multifeature and multivariate ST series problems.
TVGCN: Time-varying graph convolutional networks for multivariate and multifeature spatiotemporal series prediction.
阅读:5
作者:Sun Feiyan, Hao Wenning, Zou Ao, Cheng Kai
| 期刊: | Science Progress | 影响因子: | 2.900 |
| 时间: | 2024 | 起止号: | 2024 Jul-Sep;107(3):368504241283315 |
| doi: | 10.1177/00368504241283315 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
