Bayesian multivariate skew meta-regression models for individual patient data.

阅读:3
作者:Ibrahim Joseph G, Kim Sungduk, Chen Ming-Hui, Shah Arvind K, Lin Jianxin
We examine a class of multivariate meta-regression models in the presence of individual patient data. The methodology is well motivated from several studies of cholesterol-lowering drugs where the goal is to jointly analyze the multivariate outcomes, low density lipoprotein cholesterol, high density lipoprotein cholesterol, and triglycerides. These three continuous outcome measures are correlated and shed much light on a subject's lipid status. One of the main goals in lipid research is the joint analysis of these three outcome measures in a meta-regression setting. Since these outcome measures are not typically multivariate normal, one must consider classes of distributions that allow for skewness in one or more of the outcomes. In this paper, we consider a new general class of multivariate skew distributions for multivariate meta-regression and examine their theoretical properties. Using these distributions, we construct a Bayesian model for the meta-data and develop an efficient Markov chain Monte Carlo computational scheme for carrying out the computations. In addition, we develop a multivariate L measure for model comparison, Bayesian residuals for model assessment, and a Bayesian procedure for detecting outlying trials. The proposed multivariate L measure, Bayesian residuals, and Bayesian outlying trial detection procedure are particularly suitable and computationally attractive in the multivariate meta-regression setting. A detailed case study demonstrating the usefulness of the proposed methodology is carried out in an individual patient data multivariate meta-regression setting using 26 pivotal Merck clinical trials that compare statins (cholesterol-lowering drugs) in combination with ezetimibe and statins alone on treatment-naïve patients and those continuing on statins at baseline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。