From Spectra to Structure: AI-Powered (31)P NMR Interpretation.

阅读:4
作者:Alberts Marvin, Hartrampf Nina, Laino Teodoro
Phosphorus-31 nuclear magnetic resonance ((31)P NMR) spectroscopy is a powerful technique for characterizing phosphorus-containing compounds in diverse chemical environments. However, spectral interpretation remains a time-consuming and expertise-dependent task, relying on reference tables and empirical comparisons. In this study, we introduce a data-driven approach that automates (31)P NMR spectral analysis, providing rapid and accurate predictions of the local phosphorus environments. By leveraging a curated data set of experimental and synthetic spectra, our model achieves a Top-1 accuracy of 53.64% and a Top-5 accuracy of 77.69% at predicting the local environment around a phosphorus atom. Furthermore, it demonstrates robustness across different solvent conditions and outperforms expert chemists by 25% in spectral assignment tasks. The models, data sets, and architecture are openly available, facilitating seamless adoption in chemical laboratories engaged in structure elucidation, with the goal of advancing (31)P NMR spectral analysis and interpretation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。